Defense Applications of Mathematical Programs with Optimization Problems in the Constraints
نویسندگان
چکیده
Theory, computation, and an example of mathematical programming models with optimization problems in the constraints have been discussed in a previous paper [1]. A computer program for solving mathematical programming models with nonlinear programs in the constraints has been presented in a subsequent paper [2], A procedure for transforming mathematical programs with two-sided optimization problems in the constraints into mathematical programs with nonlinear programs in the constraints, enabling solution by the computer program of [2], has been given in r 3]. The present paper formulates models of defense problems which are convex programs having the mathematical properties treated in the previous papers. The models include several strategic forces planning models and two general purpose forces planning models.
منابع مشابه
Duality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملThe Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملAn efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملEFFICIENCY OF IMPROVED HARMONY SEARCH ALGORITHM FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS
Many optimization techniques have been proposed since the inception of engineering optimization in 1960s. Traditional mathematical modeling-based approaches are incompetent to solve the engineering optimization problems, as these problems have complex system that involves large number of design variables as well as equality or inequality constraints. In order to overcome the various difficultie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 22 شماره
صفحات -
تاریخ انتشار 1974